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ABSTRACT 

The physics of the Meridional Overturning Circulation (MOC) and 

interhemispheric heat transport is explored with an emphasis on the upper and central 

ocean.  Sea surface temperature and wind stress are considered in the context of their 

ability to influence the MOC pattern and their relative significance is quantified.  Most 

calculations in this study use an idealized rectangular basin which makes it easier to 

identify the key dynamic processes and explain interaction.  Volumetric and advective 

heat transport streamfunctions are used to analyze interhemispheric exchanges of mass 

and energy.   

Data concerning the effects of equatorially-asymmetric wind stress and surface 

heat flux forcing are used to construct expressions which explicitly define the 

relationships between wind stress, surface heat flux, interhemispheric volume flow, and 

heat transport.  The relative importance of wind stress and surface heat flux to the overall 

values of transport is discussed in light of climatology. 

The meridional overturning circulation in the upper ocean is found to be the 

dominant factor in interhemispheric heat transport and in the maintenance of the Earth’s 

climate despite its extremely small contribution to total meridional-vertical circulations in 

the entire ocean basin.  This study suggests that the previous emphasis on deep 

overturning in the abyssal region and small-scale mixing as the dominant factors in the 

meridional overturning circulation should be reconsidered and the role of wind stress and 

surface heat fluxes more thoroughly investigated as determining factors of MOC strength 

and maintenance. 

This study explores possible mechanisms responsible for climate shift which 

could result in long-term changes to weather patterns and ocean conditions altering 

important factors in the Navy’s operating environment.  Thus, long-term Navy planning 

must include an appreciation for possible changes in the forcing mechanisms responsible 

for the meridional overturning circulation. 
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I. INTRODUCTION 

A. THE IMPORTANCE OF THE MERIDIONAL OVERTURNING 
CIRCULATION 

The world ocean is one of the main constituents of the Earth’s climate system.  

Most of the Earth is covered by the world ocean, so a significant portion of the solar 

radiation that reaches the planet’s surface is received by the ocean.  Surface waters are 

warmed by this radiation.  The heat capacity of the ocean, along with the presence of 

ocean currents, allows the ocean to store and redistribute heat energy before it is lost to 

the atmosphere or space.  The ability of the ocean to transfer heat energy from warmer 

areas of the planet’s surface to cooler areas is a significant factor in maintaining the 

climatic state of the Earth. 

Large-scale ocean circulation in the ocean is caused by a variety of factors.  

Wind-driven currents affect the upper parts of the ocean.  Currents driven by density 

changes in water masses at the sea surface caused by fluxes of heat and freshwater  

interact with interior mixing caused by temperature and salinity differences.  These 

interactions result in what is known as thermohaline circulation (THC) and this 

circulation is thought to be an important factor in maintaining the current climate of the 

Earth. 

However, recent work has called into question the forcing mechanisms previously 

thought responsible for the thermohaline circulation.  Also, new factors possibly affecting 

the stability of the THC in the Atlantic have been identified.  Understanding the forcing 

mechanisms behind the thermohaline circulation is crucial if oceanographers are to make 

predictions concerning changes in the THC which could likely lead to climatic changes.  

This would signal a historic shift in the focus of physical oceanography from a primarily 

observational science to a predictive one. 
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FIGURE 1. Meridional Overturning Circulation in the World Ocean 

In this paper, the term “meridional overturning circulation” (MOC) will be used 

to mean a circulation of ocean water as viewed on a meridional-vertical plane.  It is a 

descriptive, mechanism-neutral, term meaning that this particular type large-scale 

circulation of the ocean can be described while the exact mechanisms leading to this 

motion are not specified.  By contrast, the term “thermohaline circulation” generally is 

used to refer to the same phenomenon, with the assumption that the meridional 

overturning circulation is maintained by the forcing mechanisms of density fluxes at the 

ocean surface and diffusion in the ocean interior.  Since the point of this paper is to 

reconsider the limitations of classical conceptions of the forcing mechanisms responsible 

for ocean circulation along meridional-vertical planes, the term MOC will be used 

throughout. 
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B. THE CENTRAL PROBLEM 

A fundamental problem in physical oceanography and climate science concerns 

the mechanism, magnitude, and stability of the MOC in the Atlantic.  The modern theory 

of the MOC identifies at least two distinct dynamic components of the MOC – shallow 

overturning cells in the main thermocline and deep circulation in the abyssal ocean.  

Historically, development of the MOC theory has been biased towards understanding of 

the deep abyssal circulation.  However, new and emerging evidence suggests that 

meridional heat transport, the “heat engine” of the Earth’s climate, is controlled by the 

processes operating in the upper ocean. 

Unfortunately, the dynamics of the upper cell of the MOC are still poorly 

understood.  What is even more disturbing, the mechanisms for the establishment and 

maintenance of the upper and lower cells are likely to be substantially different.  This 

casts doubt on the ability of the classical thermodynamically driven Stommel-type 

models to articulate the conceptual view on the mechanisms of the MOC.  For instance, 

vertical diffusivity – the primary agent for abyssal overturning – is very weak in the 

central thermocline ( 5 2~ 10 m s− ).  It is less, by an order of magnitude, than the values 

required to reproduce realistic MOC via purely diffusive mechanisms.  Unlike the abyssal 

ocean, the thermocline is directly exposed to the surface forcing by winds and air-sea 

buoyancy fluxes which may provide the energy for meridional overturning.  These 

distinct features call for new approaches and new insights into the dynamics of the MOC. 

C. CLASSICAL THEORIES OF MERIDIONAL OVERTURNING 
CIRCULATION 

The classical view of the thermohaline circulation is provided by Stommel and 

Arons (1960a,b).  In this view, deep circulation is described as a source and sink driven 

circulation.  Deep circulation is assumed to be steady and is driven by idealized sources 

in an ocean with no bottom topography.  The sources of deep water are balanced by a 

uniform upwelling occurring throughout the basin.   
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Later, Stommel (1961) introduced a two-box model to explain meridional flow.  

In this model, heat flux into the southern box results in surface flow to the northern box.  

Heat flux out of the northern box (i.e., cooling) causes the surface water of that box to 

become more dense, which then sinks to the bottom, and returns along the bottom to the 

southern box.  The strength of the circulation is proportional to the density difference 

between the two boxes.  He also postulated that there are three equilibrium states for 

thermohaline circulation.  Two are controlled by temperature changes (one stable, the 

other unstable) and one by salinity changes. 

 

FIGURE 2. Stommel’s Two-Box Model 

The same year that Stommel offered his two-box model, Wyrtki (1961) developed 

a model of meridional circulation representing four processes: surface heating of the 

ocean in the low latitudes resulting in poleward flow at the surface, surface cooling at the 

high latitudes resulting in sinking, equatorward flow in the deep layer, and rising through 

the thermocline back to the surface.  In Wyrtki’s model, the circulation is dominated by 

changes in density by air-sea heat flux at the surface; no internal mixing is required.  

However, Wyrtki’s model does not take into account the potential for wind stress to 

contribute to overall meridional circulation and thus describes this circulation in terms of 

purely thermohaline mechanisms.  Figure 3 is a diagram detailing this model (adapted 

from Wyrtki, 1961). 
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FIGURE 3. Wyrtki’s Thermohaline Circulation Model 

Munk (1966) also provided a similar model, with diapycnal mixing in the ocean 

interior replacing surface layer mixing.  Upwelling is balanced by downward heat 

diffusion.  The poleward flow of the surface layer is driven by the pressure gradient of 

the MOC, not by wind stress and as such, is a true THC model. 

For 20 years, these simple theories seemed to offer an adequate explanation of 

deep circulation.  However, the uniform poleward flow implied by the early theories 

could not be verified, and by the 1980’s, researchers realized that the simplifications 

inherent to the classical theories had to be replaced with more realistic assumptions.  

During this time, as demand for a greater understanding of the mechanisms influencing 

the Earth’s climate came to the fore, Stommel’s 1961 theory detailing multiple equilibria 

in thermohaline circulation became more appreciated by physical oceanographers seeking 

to understand climate change.   

Stommel’s two-box model offered an explanation of thermohaline circulation for 

one hemisphere.  Rooth (1982) expanded this model to include three boxes representing 

the two hemispheres and an equatorial region.  This model describes four possible modes 

of circulation, two of which were unstable.  Rooth’s work was important in that it 

explored the possibility of transitions between stable states of meridional overturning 

circulation. 
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Bryan (1986) found that introducing a large freshwater flux at the northern 

boundary of a circulation model caused a collapse in the thermohaline circulation 

(commonly referred to as the “halocline catastrophe”).  Since Bryan’s work, 

understanding the mechanisms responsible for the maintenance of the meridional 

overturning circulation has become a very important research area in physical 

oceanography due to the dramatic climate implications of such a finding. 

D. RECENT CONTRIBUTIONS TO THE UNDERSTANDING OF THE MOC 

Since the 1980s, the physical oceanography community’s interest in the MOC has 

increased significantly.  What follows is a brief survey of some important contributions in 

this area of research. 

Marotzke and Willebrand (1991) investigated the effects of freshwater forcing on 

transitions between global THC equilibrium states using an idealized basin with 

equatorially-symmetric wind stress and temperature forcing.  They concluded that four 

different stable steady states were found under identical boundary conditions (one of 

which mirrored today’s “conveyor belt” pattern) and that relatively small changes in 

freshwater flux could lead to a transition between states. 

Weaver et al. (1993) used an idealized single-hemisphere ocean basin with 

prescribed wind, temperature, and freshwater flux forcing to determine the dominant 

factors on the stability and internal variability of the thermohaline circulation.  They 

found that surface freshwater forcing was the dominant factor in detemining the model’s 

stability and internal variability. 

Marotzke and Stone (1995) improved upon Stommel’s thermohaline circulation 

theory by offering a single-hemisphere theoretical analysis of the interactions between 

atmospheric meridional transports and the thermohaline circulation using a four-box 

ocean-atmosphere model.  They determined that the range of stable solutions with high-

latitude sinking was smaller than in related uncoupled box models due to the dependence 

of freshwater flux on the temperature gradient. 
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Noticing that different convection patterns were stable under the same surface 

boundary conditions, Rahmstorf (1995) investigated how multiple steady states arise in 

an ocean general circulation model using two alternative boundary conditions: classical 

mixed boundary conditions and a diffusive atmospheric heat balance with fixed salt 

fluxes.  These experiments showed that under the classical mixed-boundary conditions 

overturning rates of deep water were dependent on the convection site.  Under the energy 

balance atmosphere condition, different convection patterns were found to be associated 

with very different climatic states.  Heat transport of the deep circulation seemed to be 

dependent on the actual location of convection leading to the conclusion that climate 

variability in the North Atlantic depended on the location of convection in the high 

latitudes. This conclusion was further discussed in Rahmstorf (2002) and three distinct 

circulation modes were detailed: the stadial mode, the interstadial mode, and the Heinrich 

mode.  The significant difference between the first two modes was in the location of 

North Atlantic Deep Water (NADW) formation.  In the Heinrich mode, there was no 

NADW formation and water of Antarctic origin fills the deep Atlantic basin. 

In Rahmstorf and Willebrand (1995), circulation states were compared using 

traditional mixed boundary conditions and a new thermal boundary condition allowing 

for an oceanic feedback effect on atmospheric temperatures.  This approach allowed for 

surface temperature forcing that varied with time, taking into account the ocean’s effect 

on atmospheric temperatures.  Armed with this new approach, Rahmstorf and Willebrand 

showed that a temperature feedback involving horizontal heat transport regulated the 

overturning rate of the “conveyor belt” circulation while a second feedback involving 

vertical convection stabilized the conveyor belt when freshwater anomalies were 

introduced into the North Atlantic.  Thus, ocean-to-air temperature feedback mitigated 

the effects of large positive freshwater fluxes in the North Atlantic making the halocline 

catastrophe postulated by Bryan (1986) much more difficult to effect. 

Marotzke (1997) implemented boundary mixing in an ocean general circulation 

model with no wind forcing and a nearly fixed surface density to investigate the three-

dimensional dynamics of thermohaline circulation.  The vertical mixing coefficient was 
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nonzero only near side boundaries and in convective regions.  Overturning strength and 

meridional heat transports were found to be dependent on the vertical mixing coefficient. 

Rahmstorf and England (1997) used an atmospheric-ocean hybrid model along 

with an ocean-only model to study the sensitivity of deep overturning circulation to 

Southern Hemisphere winds.  This study found that the influence of Southern Ocean 

winds on NADW flow was only moderate.  However, the formation rate of Antarctic 

Bottom Water was found to be strongly dependent on winds over the Southern Ocean. 

Rahmstorf and Ganopolski (1999) offered a theory to explain climatic drift 

previously found in general circulation model experiments.  They showed how model 

initialization with unsuitable relaxation boundary conditions could result in unstable 

solutions producing unrealistic predictions of changes in thermohaline circulation.  This 

paper emphasized the need to initialize models properly so that model runs do not start 

off on unstable solution branches. 

Expanding on Rooth’s three-box model, Scott et al. (1999) examined 

interhemispheric thermohaline circulation and compared their results with those from 

single-hemisphere box models.  They found that when northern freshwater forcing was 

made weaker than southern freshwater forcing, ocean salinity feedback became negative 

whereas ocean salinity feedback can only be positive in single-hemisphere models. 

Kamenkovich, Marotzke, and Stone (2000) investigated which physical factors 

determined meridional heat transport in a global ocean general circulation model with 

idealized geometry, wind stress, and moisture fluxes.  Causes for the underestimation of 

heat transport in many models were found to be: overly large horizontal viscosities, large 

resolutions near boundaries, and the lack of interbasin mixing. 

Marotzke and Klinger (2000) looked at the three-dimensional dynamics of 

equatorially asymmetric thermohaline flow with no wind forcing and a nearly fixed 

surface density.  Their results indicated that NADW export rate from the North Atlantic 

is controlled by mixing and upwelling in the rest of the world ocean. 

Scott and Marotzke (2002) explored the large-scale consequences of diapycnal 

mixing location using a three-dimensional model of buoyancy-forced flow in a single 
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hemisphere.  In contast to previous theories, they illustrated that enhanced boundary 

mixing in the thermocline, rather than abyssal mixing, can maintain the meridional 

overturning circulation. 

Marshall and Radko (2003) applied a residual-mean theory to the Antarctic 

Circumpolar Current and found that the interaction of geostrophic eddies with winds and 

buoyancy fluxes determined the depth and stratification of the thermocline and 

influenced the pattern of the MOC. 

Klinger et al. (2004) examined the importance of zonal periodicity and other 

factors in setting the sensitivity of the MOC to the wind stress and concluded that the 

zonal wind stress over the Southern Ocean was responsible for a significant fraction of 

the MOC associated with NADW. 

Timmermann and Goosse (2004) found that neglecting wind stress in a global 

coupled atmosphere-ocean model led to a complete shutdown of the meridional 

overturning circulation thus proving that wind forcing plays a substantial role in the 

maintenance of large-scale MOC in the Atlantic. 

Boccaletti et al. (2005) showed that surface circulation dominates the heat 

transport in global ocean models making it likely that ocean heat fluxes will respond to 

changes in atmospheric winds rather than to changes in abyssal mixing.  This indicates 

that a decrease in deep overturning circulation does not necessarily imply a significant 

change in global oceanic heat transport, suggesting that variability in the global heat 

budget transport may be decadal rather than centennial or longer. 

Radko and Marshall (2006) developed a theory for the large-scale three-

dimensional structure of the Antarctic Circumpolar Current and the upper cell of its 

overturning circulation.  When compared to observations, their prognostic model had the 

ability to predict the amplitude and distribution of air-sea buoyancy fluxes.  Model 

predictions of the thermocline were consistent with the hydrography of the Southern 

Ocean. 

Hirschi and Marotzke (2007) found that numerical models could be used to 

reproduce the variability of the MOC using only boundary densities and wind stress.  On 
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seasonal timescales, MOC variability was found to be due mostly to wind stress.  

Boundary density was the leading cause of interannual MOC variability.   

Radko (2007) offered a two-dimensional analytical residual-mean model of the 

MOC in the upper ocean to illustrate the dynamics of interhemispheric interaction.  

Symmetric wind stress and air-sea buoyancy forcing leads a solution with little 

interhemispheric flow exchange or heat transfer.  This configuration was shown to be 

unstable, leading to one or two possible stable regimes, one with high-latitude sinking in 

the north, the other with sinking in the south.  In contrast to earlier studies investigating 

the role of salt advection, this study showed that the positive feedback between 

atmospheric winds and oceanic meridional circulation could also lead to spontaneous 

symmetry breaking. 

E. CRITICISMS OF THE EARLY THEORIES 

With few exceptions, all previous research into the meridional overturning 

circulation has emphasized two processes: deep overturning circulation in the abyssal 

region and small-scale vertical mixing throughout the ocean basin.  Focusing only on 

these two aspects of meridional overturning circulation may not be appropriate in light of 

Boccaletti et al. (2005) and Radko (2007).  Boccaletti et al. stipulate that advective 

meridional heat transport is dominated by processes occurring in the thermocline while 

Radko postulates that interhemispheric transports occur mostly in the upper ocean due to 

equatorially asymmetric forcing. 

 

FIGURE 4. Streamfunction and Heatfunction for the North Atlantic 
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Figure 4 from Boccaletti et al. (2005) offers interesting insights into the locations 

of maximum volume and heat transports in the North Atlantic.  Figure 4a shows that the 

center of meridional overturning circulation occurs at a level of about one kilometer.  

Circulation is weak at the upper-most levels.  In contrast, the center of maximum heat 

transport circulation occurs at these upper-most levels (Figure 4b) where the volumetric 

transport streamfunction is the weakest.  A simple conceptual diagram illustrates why this 

may be the case.  The thermocline has a smaller volume transport when compared to the 

abyssal region.  However, the temperature gradient in the thermocline is much larger.  

Even though the amount of volumetric transport in the abyssal cells dwarfs that of the 

thermocline cells,  heat transport in the abyssal cells is very small.  At these levels, cold 

water is being exchanged with water only slightly warmer.  In the thermocline, with its 

large temperature differences, a much smaller volume of transport can effectively advect 

a vastly greater amount of heat.  This would seem to indicate that overturning in the 

thermocline, not in the deep layers, is more critical for interhemispheric heat transport 

and a more important factor in influencing the world climate. 

 

FIGURE 5. Thermocline and Abyssal Cells 
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If the thermocline plays a vastly more important role in maintaining climate, then 

physical oceanographers need to reconsider the concept of meridional overturning cells.  

Previously, when the research focus was on abyssal overturning, wind stress and surface 

heat fluxes were neglected as possible mechanisms affecting the strength and 

maintenance of meridional overturning circulation.  However, wind stress and density 

fluxes do affect circulation at the surface, therefore it follows that these mechanisms 

could indeed be important factors in determining the strength and character of the MOC. 

F. THIS PAPER’S CONTRIBUTION TO THE UNDERSTANDING OF THE 
MERIDIONAL OVERTURNING CIRCULATION 

The major objective of this thesis is to understand the dynamics of the upper 

branch of the MOC in the Atlantic basin.  Specific inquiries will address a number of 

issues.  The relative contribution of sea surface forcing in shaping the pattern of the MOC 

and interhemispheric heat transport in the upper ocean will be determined.  The 

effectiveness of mechanical forcing by winds and that of thermodynamic forcing by air-

sea buoyancy fluxes will be investigated.  The possibility of predicting the strength of the 

MOC and meridional heat transport based on surface forcing mechanisms will be 

explored as well as the role of interhemispheric surface forcing asymmetries. 

It is the emphasis on the upper ocean that distinguishes this paper from earlier 

theoretical and modeling studies of the MOC.  Process-oriented numerical simulations 

are used to address these problems.  Model output will be used to identify the zero order 

physics and dynamics at play, while recording and explaining the sensitivity of the MOC 

to the form and magnitude of surface forcing.  Independent analysis of wind stress and 

surface heat flux forcing coupled with a highly-idealized geometry makes for a well-

defined problem where the effects of asymmetric forcing on the magnitude of the MOC 

and interhemispheric heat transport can be easily isolated. 
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II. METHODS 

A. APPROACH 

Numerical modeling is the most ideal tool to address the dynamics of the MOC on 

a quantitative level.  While most of the numerical experiments are of an idealized 

process-oriented character, these simulations were guided and supplemented by the 

analysis of the relevant sea-surface data and comprehensive general circulation models. 

For this study, the Massachusetts Institute of Technology General Circulation 

Model (MITgcm) was employed.  The intensity and distribution of sea surface forcing 

(sea surface temperature and wind stress) were systematically varied while the response 

of the upper MOC cell was recorded.  The focus of the analysis was on the meridional 

transport of heat and volume.  The numerical results were then compared to previous 

studies and rationalized by developing illustrative theoretical models. 

An idealized model of intermediate complexity was chosen to investigate the 

mechanisms of wind stress and surface heat flux forcing on the MOC and 

interhemispheric heat transport.  Simple box models are very useful in articulating initial 

conceptual frameworks and motivating further research, but can be inconclusive 

concerning actual physics at play.  On the other hand, comprehensive general circulation 

models are effective in giving extremely detailed data but a loss of transparency 

concerning general physical concepts can occur as the particulars of the real world are 

introduced into the model.  A model of intermediate complexity mitigates the 

disadvantages of simple and complex models by idealizing real-world parameters so that 

useful insights can be gained into the mechanisms responsible for phenomena found in 

nature. 

To understand the effects of wind stress and heat flux on the MOC, the MITgcm 

was used in conjunction with an idealized single-basin geometry.  Four types of cases 

were explored.  The first type involved equatorially symmetric wind stress and surface 

temperature forcing.  This type will be called the Symmetric case.  Two additional types 
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of model runs introduced either equatorially asymmetric wind stress or temperature 

forcing (referred to as Asymmetric Wind or Asymmetric Temperature cases, 

respectively).  The final type combined both equatorially asymmetric wind stress and 

temperature forcing (Dual-Asymmetric cases). 

B. THE NUMERICAL MODEL 

1. MITgcm 

The MITgcm is a numerical model designed for the study of the atmosphere, 

ocean, and climate.  It can be used to model both atmospheric and oceanic circulation and 

has non-hydrostatic capability which allows it to be used to study both small and large-

scale processes.  It uses the finite volume method to solve oceanographic equations, 

providing support for the treatment of irregular geometries using orthogonal curvilinear 

grids and shaved cells.  Tangent linear and adjoint code are maintained alongside the 

forward model, permitting sensitivity and optimization studies.  MITgcm supports a wide 

variety of physical parameterizations and was developed to perform efficiently on a wide 

variety of platforms. 

2. The Idealized Basin 

The idealized basin is a Cartesian box measuring 6,660 km in the zonal direction 

and 13,320 km in the meridional direction with a constant depth of 4005 m.  It covers 

120° of latitude and 60° of longitude.  The northern and southern hemispheres each cover 

60° of latitude.  There are 100 grid points along the x-direction and 200 grid points along 

the y-direction giving a model resolution of 0.6° in both horizontal directions. 
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FIGURE 6. The Idealized Basin 

The idealized basin is shown above as Figure 6.  The surface boundaries are in 

bold while the dashed line represents the equator.  Forcing curves for the symmetric case 

are superimposed on the surface as examples.  The red curve shows symmetric 

temperature forcing by latitude.  The blue curve indicates symmetric wind stress forcing 

by latitude.  Representative values are included for both curves. 

The idealized basin has 20 vertical levels.  Vertical resolution varies exponentially 

from 22 meters at the surface to 678 meters at the deepest level.  The resolution (ΔZ) at 

each vertical level is given by the following equation: 

 ( ) ( )( ) exp exp ( 1)Z l C l l⎡ ⎤= − −⎣ ⎦Δ α α  (1) 

Where C  = 112.5 m, α=0.18, and l  = the vertical level (ranging from one to 20).   

This particular set of dimensions allows a large enough volume to adequately 

represent an ocean basin to examine the effects of changing wind stress and surface heat 

flux forcing on meridional overturning circulation.  An exponential vertical resolution 

scheme is employed to capture greater detail at the upper levels of the ocean, the focus of 

this study. 
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3. Surface Forcing Parameters 

a. Wind Stress 

Zonal wind stress forcing is considered in this study, which varies only in 

the meridional direction.  To clearly separate the equatorially symmetric and asymmetric 

processes – the focus of this study – total wind stress magnitude is composed of 

symmetric and asymmetric components.  The wind stress equation is: 

 sym asymAτ τ τ= − . (2) 

The coefficient, A, is the only variable altered between runs and is used to 

determine the magnitude of the wind stress asymmetry between the hemispheres of the 

idealized basin. 

The symmetric portion of the wind stress equation is given by: 

 ( ) ( )3 3
04 4 cos 5 cos 3symτ τ πφ πφ⎡ ⎤= −⎣ ⎦ , (3) 

where 2
0 0.1 /τ = N m , 3

2= πφ θ , and θ  is the latitude.  Thus, φ  is equal to 1
2  at 60° N, 

1
2−  at 60° S, and zero at the equator. 

The asymmetric portion of wind stress is given by: 

 ( ) ( ) ( )1 2 11 1
0144 3 24 12sin 2 sin 4 sin 6asym ⎡ ⎤= − + −⎣ ⎦τ τ πφ πφ πφ . (4) 

The asymmetric part of the equation was written so as to reduce the 

asymmetry near the equator while emphasizing a mid-latitude asymmetry.  Figure 7 

illustrates an example of a wind stress forcing curve with its symmetric and asymmetric 

components. 
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FIGURE 7. Components of the Wind Stress Forcing Curve 

The value of A controls the magnitude of the peak wind stress and the 

overall mean wind stress found in both hemispheres.  When A = 0, the wind stress curve 

is symmetric about the equator.  When A > 0, the magnitude of westerly peak wind stress 

and mean hemispheric wind stress is higher in the northern hemisphere, while A < 0 

causes a higher peak magnitude and mean hemispheric wind stress to occur in the 

southern hemisphere.  In this study, values of A that produce mid-latitude peak wind 

stress ratios and interhemispheric mean wind stress differences representative of the 

current climate are used.  Table 1 summarizes the values of A that were used in this 

experiment along with other measures of the wind stress asymmetry. 
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TABLE 1. Wind Stress Ratios, Peaks, and Locations 

Peak Wind Stress (Nm-2) Peak Wind Stress Location 

Value of 
A 

Ratio of 

Wind 

Stress 

Wind Stress 

Difference 

(Nm-2) 
Southern 

Hemisphere 

Northern 

Hemisphere 

Southern 

Hemisphere 

Northern 

Hemisphere 

0 1:1 0.000 0.121 0.121 45.3° S 45.3° N 

-36 3:2 0.022 0.146 0.097 44.7° S 45.6° N 

-60 2:1 0.037 0.163 0.081 44.7° S 45.9° N 

-90 3:1 0.055 0.183 0.061 44.7° S 46.5° N 

-108 4:1 0.066 0.195 0.049 44.4° S 47.1° N 

 

In the table above, the first column gives the southern-to-northern ratio of 

the magnitudes of peak westerly wind stresses found in the mid-latitudes of both 

hemispheres.  The second column shows the difference in the mean wind stresses 

between the hemispheres.  The actual value of the peak westerly wind stress is given for 

both hemispheres in the following two columns.  The latitude where the peak westerly 

wind stress occurs for both hemispheres is given in the last two columns.  In all cases 

above, the southern hemisphere was given the stronger wind stress, which corresponds to 

negative values of A. 
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FIGURE 8. Zonal Wind Stress Forcing 

Figure 8 shows all wind stress forcing curves used in this study.  The 

climatology curve is the annual and zonal mean derived from NOGAPS wind stress data 

from 1990-1997. 

b. Sea Surface Temperature 

As with wind stress, sea surface temperature forcing is varied only in the 

meridional direction.  The sea surface temperature forcing consists of symmetric and 

asymmetric components, as well.  The temperature forcing equation is: 

 sym asymT T BT= − , (5) 

where the coefficient, B, is the only variable altered between runs and is used to 

determine the value of the maximum temperature and the meridional location of that 

maximum. 
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The symmetric portion of the temperature forcing equation is given by: 

 ( )cos 2sym mid addT T T= + πφ , (6) 

where Tmid = 13 °C, Tadd = 12 °C, and 3
2= πφ θ  with θ  equal to the latitude.  Thus, the 

symmetric temperature equation gives a temperature range of 1 °C to 25 °C, with the 

maximum temperature located along the equator. 

The asymmetric portion of the temperature equation is given by: 

 ( ) ( ) ( )1 1 1sin 2 sin 4 sin 6
3 3 6

πφ πφ πφasymT = − +  (7) 

The asymmetric part of the equation emphasizes an interhemispheric 

asymmetry with a maximum sea surface temperature in the equatorial band, while 

minimizing asymmetry at the northern and southern limits to ensure that sea surface 

temperature remained close to 1 °C at those locations.  Figure 9 shows an example of a 

sea surface temperature forcing curve with its symmetric and asymmetric components. 
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FIGURE 9. Components of the Temperature Forcing Curve 

The coefficient, B, allows for easily manipulation of the temperature 

forcing in successive model runs.  When B = 0, the temperature forcing curve is purely 

symmetric.  For B > 0, the maximum temperature is found in the northern hemisphere 

while B < 0 places the peak temperature in the southern hemisphere.  The absolute value 

of B determines the magnitude of the temperature peak.  Table 2 gives all values of B that 

were used in this study along with corresponding values dependent on the magnitude of 

B.  The second column shows the highest value of temperature forcing for that particular 

value of B, while the third column gives the latitude where this maximum is found during 

the model run.  There is little change in the latitude of peak temperature between 

successive model runs with asymmetric temperature forcing; all peak temperatures 

remain within two degrees of one another.  The last column gives the difference in mean 

sea surface temperature between the northern and southern hemispheres.  All values of B 
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used in this experiment were negative, making the peak location and mean sea surface 

temperatures higher in the southern hemisphere for every model run. 

TABLE 2. Temperature Peaks and Mean Sea Surface Temperature Differences 

Value of B Peak Temperature (°C) 
Peak Temperature 

Location 

Mean Sea Surface 
Temperature 

Difference (°C) 

0.0 25.0 Equator 0.00 

-5.0 26.7 7.8° S 2.46 

-7.5 28.1 9.0° S 3.70 

-10.0 29.6 9.9° S 4.93 

 

FIGURE 10. Zonal Temperature Forcing 

Figure 10 gives all sea surface temperature forcing curves used in this 

study.  The climatology curve is derived from NCEP reanalysis data for years 1984 to 

2004.  
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4. Inputs into MITgcm 

Table 3 is a summary of variable input parameters used for all model runs in this 

experiment.  As discussed previously, the idealized Cartesian basin had meridional and 

zonal extents of 120° and 60° while depth was kept constant throughout the basin at 

4,005 meters.  The diffusivity and viscosity values fell within ranges used in previous, 

similar, experiments.  The temperature restoring time scale was two months and the 

model was integrated forward at 10-minute intervals. 

The mid-latitude beta plane approximation was used to calculate the Coriolis 

parameter for each latitude represented by the model.  All model runs used the Gent-

McWilliams parameterization to represent the effect of mesoscale eddies on isopycnals 

(Gent and McWilliams, 1990).  It is important to note that no attempt was made to 

realistically simulate deep overturning cells since the purpose of this experiment is to 

determine the dynamics and contributions to volume and heat transport in the thermocline 

cells. 

TABLE 3. Summary of Numerical Parameters 

Parameter(s) Value(s) 

Basin width, length 60°, 120° 

Basin depth 4005 m 

Horizontal, vertical diffusivity 2 × 103 m2 s-1, 5 × 10-5 m2 s-1 

Horizontal, vertical viscosity 5 × 104 m2 s-1, 5 × 10-5 m2 s-1 

Longitude, latitude grid spacing 0.6°, 0.6° 

Number of vertical levels, grid spacing 20 levels varied exponentially from 22 to 678 m 

Temperature restoring timescale 60 days 

Time step, momentum 10 min 

Time step, tracers 10 min 
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5. Model Runs  

Twenty cases were run using the MITgcm in this study.  Table 4 summarizes 

these cases, giving the values of A and B that were used in the wind stress and 

temperature forcing equations, respectively.  Differences in mean wind stress and sea 

surface temperature between the southern and northern hemispheres are listed next to the 

corresponding values of A and B that produce those differences.  Case A was the only 

dual-symmetric case, having both equatorially-symmetric wind stress and temperature 

forcing.  Cases C, K, and L were run with symmetric wind stress forcing and asymmetric 

sea surface temperature forcing.  In Cases Q, I, J, and B, temperature forcing was kept 

symmetric while wind stress forcing was made sequentially more asymmetric.  All other 

cases were dual-asymmetric. 

TABLE 4. Model Run Summary 

 Δτ (Nm-2) 0 0.022 0.0367 0.055 0.066 
ΔT (°C) Coefficients A = 0 A = -36 A = -60 A = -90 A = -108 

 4.93  B = -10 L T G H P 
 3.70  B = -7.5 K S E F O 
 2.46  B = -5 C R M N D 
 0  B =  0 A Q I J B 

 

The MITgcm was set to record data files every year during model runs.  Four 

output fields were used in this study: temperature, zonal velocity, meridional velocity, 

and vertical velocity. 

All model runs were integrated until equilibrium had been reached.  Equilibrium 

was considered to have been reached when the ratio of the hemispheric net surface heat 

flux difference and heat transport across the equatorial plane came to within 1% of its 

discernible final asymptotic value.  Figure 11 shows the equilibrium curve for Case R and 

is provided as an example.  Equilibrium for this particular case was reached at 44 years 

and all other cases reached equilibrium in similar amounts of time. 
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FIGURE 11. Equilibrium Curve for Case R 

C. QUANTIFYING THE MOC 

1. Volume Streamfunction 

The simplest way to define the MOC is in terms of volume transport along a 

meridional-vertical plane.  The focus of this study is on interhemispheric exchanges, 

therefore it is natural to express the cross-equatorial volume transport in terms of a 

volume transport streamfunction at the equatorial plane as follows.   

Our starting point is the continuity equation: 

 0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

. (8) 

Integrating (8) zonally, results in: 

 0
∂ ∂

+ =
∂ ∂

v w
y z

, (9) 
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where  denotes the zonal coast-to-coast averages.  Since the zonally-integrated flow is 

non-divergent along a meridional-vertical plane, Equation (9) can be expressed in terms 

of a streamfunction: 

 ∂
=
∂
Ψv
z

, (10) 

and 

 ∂
= −

∂
Ψw
y

, (11) 

with velocities averaged over all years of the model run. 

Using Equation (10), the streamfunction of meridional volumetric transport is 

expressed as: 

 ( ) ( ), , ,
−

= ∫Ψ
z

H
y z v y z dz  (12) 

where ( ),v y z  is the time-averaged and zonally-integrated meridional velocity for a 

given latitude-depth combination.  Equation (12) gives the streamfunction value for every 

grid point along the meridional-vertical extent of the basin.  To analyze interhemispheric 

volume exchanges, the focus is on the streamfunction values at the equator, therefore a 

useful measure interhemispheric volume transport (as a proxy of meridional overturning 

circulation) is given as: 

 ( )0
max

=
=Ψ ΨEq y

. (13) 

Thus, the meridional volumetric transport across the equator is calculated by 

integrating the transport from the bottom of the basin up to the level of maximum 

volumetric transport.  This definition gives the total volumetric transport across the 

equator at the lower levels.  Continuity dictates that the net volumetric transport at all 

levels above the level of maximum transport be of the same magnitude, but opposite in 

direction.  Maximum streamfunction at the equator, calculated for each model run, is an 

indicator of the strength of the MOC.  For the dual-symmetric model run, it is expected 

that meridional transport will be very nearly zero, as all wind and temperature forcing is 

symmetric about the equator.  For all other model runs, volumetric transport should be to  
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the north at upper levels, and to the south at levels closer to the bottom.  This is due to the 

chosen pattern of asymmetries in wind stress and/or temperature forcing with stronger 

forcing in the southern hemisphere. 

2. Heat Streamfunction 

It has been shown how a streamfunction can be used to analyze interhemispheric 

volume transport.  The exchange of heat between hemispheres can also be analyzed in a 

similar manner.  Advective heat transport is the primary mechanism of heat exchange at 

the upper levels of the ocean and this transport can be expressed in terms of a 

“heatfunction” (Boccaletti et al., 2005). 

We start with the advective-diffusion equation for temperature: 

 ( ) ( ) ( ) 2
2

2H H V

uT vT wTT TK T K
t x y z z

∂ ∂ ∂∂ ∂
+ + + = ∇ +

∂ ∂ ∂ ∂ ∂
. (14) 

Neglecting the interior diffusion in the central thermocline and applying time averaging 

and zonal integration, Equation (14) reduces to: 

 0
∂ ∂

+ =
∂ ∂
vT wT
y z

. (15) 

In the steady state, divergence is zero because there are no internal heat sources or 

sinks in the thermocline interior, and therefore, Equation (15) can be expressed in terms 

of a “heatfunction,” QΨ , as follows: 

 0

∂
=

∂
Ψ

ρ Q
pc vT

z
, (16) 

and 

 0 ,
∂

= −
∂
Ψ

ρ Q
pc wT

y
 (17) 

where 0ρ = 1025 kg/m3 and pc = 3850 J/kg°C, with pc  and 0ρ  being the sea water density 

and heat capacity.  Equation (16) can be formulated to calculate heat transport in the 

meridional-vertical plane: 

 ( ) ( )0 , , ,
−

= ∫Ψ ρ
z

Q p H
c v y z T y z dz  (18) 
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where ( ) ( ), ,v y z T y z  is the time-averaged and zonally-integrated product of 

meridional velocity and temperature for a given latitude-depth combination.  To analyze 

interhemispheric heat exchanges, the focus is on the heatfunction values of the at the 

equator, therefore a useful measure interhemispheric heat transport is given by: 

 ( )0
max

=
=Ψ Ψ

EqQ Q y
 (19) 

Thus, the interhemispheric heat transport is expressed as the maximum value of 

the heatfunction along the equator.  For the dual-symmetric model run, it is expected that 

this heat transport will be very nearly zero, as all wind and temperature forcing is 

symmetric about the equator.  For all other model runs, heat transport should be to the 

north at upper levels, and to the south at levels closer to the bottom. 
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III. RESULTS 

A. DESCRIPTION OF THE MODEL OUTPUT 

Qualitative observations gleaned from yearly output data indicated that each 

model run offered a reasonable description of an idealized two-hemisphere ocean.  The 

pattern and magnitudes of steady-state horizontal currents, sea surface temperatures, net 

surface fluxes, vertical temperature stratification, and other measurable parameters were 

qualitatively consistent with climatological data.  A few examples are provided below. 

Figure 12 shows the annual mean net heat flux into the ocean derived from 

ECMWF climatology data.  Figure 13 shows net heat flux into the ocean for Case B at 

equilibrium.  The model case is characterized by an equatorial band of positive heat flux 

much like that found in the Atlantic and Pacific oceans in climatology.  Also, the western 

boundary currents are well-represented in the model as areas of net heat flux from the 

ocean to the atmosphere and space. 
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FIGURE 12. Annual Mean Net Heat Flux into the Ocean 

 

FIGURE 13. Net Heat Flux into the Ocean for Case B 
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 Likewise, Figure 14 illustrates typical temperature stratification patterns found in 

model runs.  The upper levels have been exaggerated to display finer detail in the 

thermocline.  The left plot (a) shows a meridional-vertical cross-section while the right 

(b) gives a zonal-vertical cross-section. 

 

FIGURE 14. Typical Temperature Stratification Patterns, (a) a zonally-averaged 
meridional cross-section, (b) a zonal cross-section at the equator 

Table 5 summarizes several global characteristics of the interhemispheric 

transport obtained from each model run.  The first column lists the cases in the order they 

were run.  A letter designation was given to each case.  The next two columns give the 

values of the coefficients for the forcing equations.  Wind Stress Difference gives the 

difference in the mean wind stress between the southern and northern hemispheres.  

Likewise, SST Difference gives the difference between the mean sea surface 

temperatures found in the southern and northern hemispheres.  These two differences are 

dependent on the values chosen for A and B in each case.  Following these columns, the 

total time the model was run is shown. 

The final result for equilibrium interhemispheric volume transport is given in the 

Volume Transport column in Sverdrups.  The equilibrium interhemispheric heat transport 

in terawatts is listed next.  Finally, the overall difference in the total sea surface flux 

found in both hemispheres is given. 
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TABLE 5. Global Characteristics of the Interhemispheric Transport 

Case 
Value 
of A 

Value 
of B 

Wind 
Stress 

Difference 
(Nm-2) 

SST 
Difference 

(°C) 

Model 
Run 
Time 

(Years) 

Volume 
Transport 

(Sv) 

Heat 
Transport 

(TW) 

Surface 
Flux 

Difference 
(TW) 

A 0 0 0 0 67 0.67 0 43 
B -108 0 0.066 0 55 4.52 223 405 
C 0 -5 0 2.46 62 3.27 148 297 
D -108 -5 0.066 2.46 57 4.93 374 752 
E -60 -7.5 0.037 3.70 50 5.14 354 737 
F -90 -7.5 0.055 3.70 54 5.56 416 861 
G -60 -10 0.037 4.93 59 6.43 432 914 
H -90 -10 0.055 4.93 53 6.80 497 1,049 
I -60 0 0.037 0 58 2.47 124 206 
J -90 0 0.055 0 60 3.69 185 328 
K 0 -7.5 0 3.70 61 4.55 225 474 
L 0 -10 0 4.93 51 5.78 305 661 
M -60 -5 0.037 2.46 56 3.87 275 552 
N -90 -5 0.055 2.46 51 4.38 340 683 
O -108 -7.5 0.066 3.70 60 5.81 450 930 
P -108 -10 0.066 4.93 56 7.05 534 1,121 
Q -36 0 0.022 0 114 1.45 74 106 
R -36 -5 0.022 2.46 100 3.53 225 453 
S -36 -7.5 0.022 3.70 102 4.82 302 632 
T -36 -10 0.022 4.93 104 6.08 382 816 

 

B. PATTERNS OF VOLUME AND HEAT TRANSPORT 

A complete summary of the patterns of heat and volume transport in all model 

runs are relegated to the Appendix.  Typical examples of the streamfunction (Figure 15) 

and heatfunction (Figure 16) fields in the dual-asymmetric runs are shown below.  The 

asymmetric nature of volume and heat transport at the upper levels is the salient feature 

of both plots. 
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FIGURE 15. Volume Streamfunction for Case P 

 

FIGURE 16. Heatfunction for Case P 
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IV. INTERPRETATION AND ANALYSIS 

A. REGRESSION ANALYSIS 

1. Method 

In addition to examining raw numerical data and result plots, it is desirable to 

explicitly express the relationships between equatorially-asymmetric forcing mechanisms 

and interhemispheric transports.  The first step in developing these expressions is to use 

regression analysis to formulate explicit relationships between mean interhemispheric 

wind stress difference, mean interhemispheric sea surface temperature differences and 

corresponding responses on interhemispheric volume and heat transports.   

2. Volume Transport 

The response of volume transport to forcing asymmetries in wind stress and sea 

surface temperature is shown in Figure 17 and Figure 18.  Regression analysis was used 

to explain the volume transport response when keeping sea surface temperature 

asymmetry constant while varying wind stress forcing asymmetry (Figure 17) and also 

when wind stress forcing is kept constant while varying the sea surface temperature 

hemispheric asymmetries (Figure 18).  All regression curves were resolved as second-

order polynomial equations.  Figure 19 gives the overall volume transport response to 

both wind stress and sea surface temperature mean differences between the hemispheres.  

In all plots, diamonds denote individual model cases. 
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FIGURE 17. Volume Transport Response to Wind Stress Asymmetry 

 

FIGURE 18. Volume Transport Response to Sea Surface Temperature Asymmetry 
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FIGURE 19. Overall Volume Transport Response to Asymmetry 

3. Heat Transport 

Similarly, regression analysis was used to determine heat transport response to 

changes in wind stress and sea surface temperature forcing asymmetries.  Figure 20 

shows the changes in overall interhemispheric heat transport when wind stress forcing 

asymmetry is increased with constant sea surface temperature forcing asymmetry.  In 

Figure 21, the heat transport increases are linked to increasing asymmetry in hemispheric 

sea surface temperatures with constant wind stress forcing.  Figure 22 displays the overall 

heat transport response to varied asymmetry in mean hemispheric wind stress and sea 

surface temperature.  As before, diamonds mark the locations of the 20 individual cases 

of this experiment. 
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FIGURE 20. Heat Transport Response to Wind Stress Asymmetry 

 

FIGURE 21. Heat Transport Response to Sea Surface Temperature Asymmetry 
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FIGURE 22. Overall Heat Transport Response to Asymmetry 

4. Explicit Dependencies 

Each plot of transport response to increasing wind stress asymmetry yields four 

separate equations describing this response.  Likewise, each plot of the relationship between 

interhemispheric transport and mean hemispheric sea surface temperature asymmetries 

provides five equations.  Using the multiple regression function of MATLAB, these 18 

equations were used to construct two final equations relating the mean interhemispheric 

differences in wind stress and sea surface temperature to volume and heat transports. 

The solution equation for volume transport (in Sv) is: 

 2 20.0795 177.378 8.740 0.686 44.549 0.728V T T T= + − + + +τ τ τ  (20) 

and has an error of ± 0.37 Sv. 

The solution equation for heat transport (in TW) is: 

 2 20.562 367.416 23.379 58.756 3466.598 0.027Q T T T= − + + + −τ τ τ  (21) 

and has an error of ± 5.37 TW. 
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In these equations, T refers to the difference in the mean sea surface temperature between 

the hemispheres and is directly related to the value of B in Equation (5).  The value of τ 

is determined by the value of A in Equation (2) and is the difference in the mean wind 

stress found in the northern and southern hemispheres.   

5. Analysis of the Dominant Trends 

Overall volume and heat transports have now been explicitly expressed in terms 

of the differences in the mean values of wind stress and sea surface temperature in both 

hemispheres.  Although the relative contributions of wind stress and heat flux 

asymmetries to total transport are dependent on specific difference values, the dominant 

trends can be inferred by considering the orders of magnitude of T and τ that are 

consistent with climatology.  The annual mean climatological values of the mean 

hemispheric wind stress difference along with the absolute mean sea surface temperature 

difference between hemispheres are substituted into the solution equation to determine 

the relative contributions of wind stress and net surface heat flux to the overall volume 

and heat exchanges between hemispheres.  Table 6 is a climatology summary of these 

values. 

TABLE 6. Climatology Summary 

Month 

Mean Wind 
Stress 

Difference 
(×102 Nm-2) 

Absolute Mean 
SST Difference 

(°C) 
January 1.06 1.78 
February 1.50 2.69 
March 2.63 2.61 
April 3.49 1.51 
May 3.74 0.43 
June 2.92 2.78 
July 3.26 5.05 
August 3.53 6.43 
September 3.17 6.19 
October 2.80 4.64 
November 1.96 2.41 
December 1.34 0.05 
Mean 2.62 3.05 
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Taking Equations (20) and (21), and substituting the annual mean values gives: 

 ( ) ( ) ( )( ) ( ) ( )2 20.0795 3.05 177.378 0.0262 8.740 3.05 0.0262 0.686 3.05 44.549 0.0262 0.728V = + − + + +  (22) 

 0.74 0.12 0.70 2.09 1.17 0.73 4.15V Sv= + − + + + =  (23) 

and 

 ( ) ( ) ( )( ) ( ) ( )2 20.562 3.05 367.416 0.0262 23.379 3.05 0.0262 58.756 3.05 3466.598 0.0262 0.027Q = − + + + −  (24) 

 5.22 0.25 1.87 179.21 90.82 0.03 276.84Q TW= − + + + − =  (25) 

All terms in the volume transport equation are important, being of approximately the 

same order of magnitude.  However, the heat transport equation shows a dependency on 

the linear terms only, with those terms contributing to 97% of the overall 

interhemispheric heat transport.   

B. ASYMMETRIC FORCING CONTRIBUTIONS TO TRANSPORTS 

1. Volume Transport 

According to the solution equations and given the current climatic annual mean 

values, wind stress asymmetry between the northern and southern hemispheres can 

account for 31% of the interhemispheric volume transport.  Differences in net surface 

heat flux can account for the remaining 69% of volume transport.  On average, the 

interhemispheric volume transport increases by approximately one Sverdrup for every 

1°C difference in mean sea surface temperature between hemispheres.  There is also, on 

average, an increase of flow by 0.2 Sv for every increase of 0.01 Nm-2 in mean wind 

stress difference between hemispheres.  Because all terms in the volume solution 

equation are important, the actual increases are highly dependent on the combination of 

wind stress and sea surface temperature difference.  Figure 23 is indicative of the non-

linear nature of the relationship between these two variables. 
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FIGURE 23. Volume Transport Response to Dual-Asymmetry 

2. Heat Transport 

According to the solution equations and given the current climatic annual mean 

values, wind stress asymmetry between the northern and southern hemispheres can 

account for 33% of the interhemispheric volume transport.  Differences in net surface 

heat flux account for the remaining 67% of volume transport.  The interhemispheric heat 

transport increases by approximately 64 TW for every 1°C difference in mean sea surface 

temperature between hemispheres.  There is also an increase of heat transport by 34 TW 

for every increase of 0.01 Nm-2 in mean wind stress difference between hemispheres.  

Since the linear terms dominate the heat transport solution equation, these relationships 

between wind stress and heat flux asymmetries with the heat transport are very 

independent of one another, meaning that total changes in heat transport will be the result 

of the sum of the changes in heat transport due to changes in the individual terms. 
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FIGURE 24. Heat Transport Response to Dual-Asymmetry 

C. SIGNIFICANCE OF THE THERMOCLINE CELL FOR THE VOLUME 
AND HEAT TRANSPORTS 

Comparing the model determinations of volume transport and heat transport with 

climatological values reveals the importance of the thermocline as the main conduit of 

interhemispheric heat flow.  Volume transport in the thermocline cell accounts for only 

23% of the overall interhemispheric volume transport reported from climatological values 

(Pickard and Emery, 2003).  However, 87% of the overall advective heat transport at the 

equator (Hsiung et al., 1989) can be accounted for in this smaller percentage of volume 

transport.  Thus, the thermocline meridional overturning circulation cells have a 

disproportionally larger role in affecting the overall climate of the Earth than mere 

volumetric flow would suggest.   
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TABLE 7. Significance of the Thermocline Cell 

Interhemispheric 

Transport of: 

Thermocline 

(model) 

Overall 

(climatology) Percentage 

Volume (Sv) 4.15 18 23% 

Heat (TW) 276.84 320 87% 
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V. CONCLUSIONS 

The physics of the Meridional Overturning Circulation (MOC) and 

interhemispheric heat transport has been explored with an emphasis on the upper and 

central ocean.  It has been shown how a model of intermediate complexity can be used to 

identify the key dynamic processes and explain interaction.  Sea surface temperature and 

wind stress were considered in the context of their ability to influence the MOC pattern.  

The relative significance of sea surface heat flux and wind stress was quantified.  A 

model of intermediate complexity was used to identify the key dynamic processes and 

explain interaction.  Volumetric and advective heat transport streamfunctions were used 

to analyze interhemispheric exchanges of mass and energy.   

Expressions were constructed which explicitly defined the relationships between 

equatorially-asymmetric wind stress and surface heat flux to volume flow and heat 

transport.  The relative importance of wind stress and surface heat flux to the overall 

values of transport was discussed in light of climatology.  Under current climate 

conditions, equatorially-asymmetric wind stress can account for approximately one-third 

of the volume and advective heat transport between the northern and southern 

hemispheres in the upper ocean while the remaining two-thirds can be attributed to 

interhemispheric sea surface heat flux differences. 

The MOC in the upper ocean is the dominant factor in interhemispheric heat 

transport and in the maintenance of the Earth’s climate despite its extremely small 

contribution to total meridional-vertical circulations in the entire ocean basin.  Thus, 

thermocline overturning cells are more effective in terms of heat transport than abyssal 

overturning cells.  Asymmetries in wind stress and surface heat flux forcing control the 

strength of interhemispheric transports.  This study suggests that the previous emphasis 

on deep overturning in the abyssal region and small-scale mixing as the dominant factors 

in the MOC should be reconsidered and the role of wind stress and surface heat fluxes 

more thoroughly investigated as determining factors of MOC strength and maintenance. 
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The MOC is an important constituent of the Earth’s climate system.  

Understanding the forcing mechanisms responsible for the strength and maintenance of 

this circulation is crucial if oceanographers are to make predictions concerning changes 

in the meridional overturning circulation.  Paleoclimatology data indicates that the MOC 

has undergone many changes throughout Earth’s history resulting in climate shifts to new 

equilibriums (Rahmstorf, 2002).  A climate shift similar in magnitude to previous shifts 

could result in long-term changes to weather patterns and ocean conditions altering 

important factors in the Navy’s operating environment.  Thus, long-term Navy planning 

must include an appreciation for possible changes in the forcing mechanisms responsible 

for the meridional overturning circulation. 
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VI. DIRECTIONS FOR FUTURE RESEARCH 

A. SUGGESTIONS 

To aid in future research in the field of meridional overturning circulation, I offer 

a hierarchy of models of increasing complexity.  Each suggestion below builds on all 

previous suggestions. 

1. Idealized Basin (Open Channel) 

A small, but significant, change with the potential to yield better insights into 

wind stress and heat flux forcing as contributors to the strength of the MOC would be to 

include a channel in the southern hemisphere of the idealized basin presented in this 

paper.  This channel would represent the Southern Ocean and the larger wind stresses 

introduced into the southern hemisphere of the basin would induce westerly flow not 

inhibited by an eastern boundary.  The meridional extent of the channel should be closely 

matched to the actual width of the Drake Passage (approximately 10° of latitude). 

2. Idealized Basin (Realistic Geometry) 

Another possible improvement upon this experiment would be to use polar 

coordinates (instead of Cartesian coordinates) while keeping all other factors the same.  

With this alternation, the zonal extent of the basin would vary with latitude, giving more 

appropriate basin widths at each latitude.  This improvement could be combined with the 

open channel described above. 

3. Realistic Basin (Bathymetry) 

The next step after implementing the changes above would be to construct a 

realistic basin in polar coordinates using bathymetric data available for the Atlantic 

Ocean.  The experiment should be run with idealized wind stress and surface flux forcing.  

The results of the previous idealized experiments could be compared with the results 
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from this experiment to confirm previous findings, or to modify previous theories in light 

of the bathymetric conditions found in the Atlantic. 

4. Realistic Basin (Forcing) 

Once experiments using idealized forcing and realistic bathymetry for the Atlantic 

have been completed, a researcher could then use wind stress and surface heat flux data 

from climatology to compare results with the experiments using idealized forcing inputs.  

Successive runs after the initial run using climatology as a base would alter wind stresses 

and surface fluxes using asymmetric forcing curves such as the ones used in this study.  

Researchers would then be in a position to make accurate claims concerning the effects of 

long-term changes in wind stress and surface flux forcing on the strength and 

maintenance of the meridional overturning circulation in the Atlantic Ocean. 

5. Global Simulation 

The most exciting experiment would be to fully model the world ocean, with 

realistic bathymetry and climatological forcing mechanisms.  Wind stresses and surface 

fluxes could be varied to reproduce possible scenarios involving long-term changes in 

these forcing mechanisms.  The model could be initialized with unaltered climatology 

data at some point in the past and allowed to run until present day.  If this default 

scenario produced results that match current ocean conditions, researchers would be in a 

prime position to use the model to predict changes in the MOC.  By varying the forcing 

parameters, model runs could produce likely scenarios for the near future.  This would be 

an ambitious project and could yield a wealth of information. 

6. Other Mechanisms 

Of course, possible forcing mechanisms responsible for the strength and 

maintenance of the meridional overturning circulation in the Atlantic Ocean are not 

necessarily limited to wind stress and surface heat flux.  Other forcing mechanisms could 

play an important role in the meridional overturning circulation in the thermocline.  

Changes in seawater density due to freshwater influx, salinity increases, and long-term 
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precipitation changes could be investigated.  Although geothermal heat flux is thought to 

be an insignificant factor in meridional overturning circulation, an investigation of this 

forcing parameter may give useful insights, if only to confirm previous assumptions. 

Another possible area of investigation is to use paleoclimatology data to 

investigate the existence or nonexistence of the MOC in the Atlantic during periods of 

glacial maximums and minimums.  Modeling the possible MOC of the past may allow us 

to more accurately predict possible circulations in the future, as the prediction of future 

states is the ultimate goal of research in this area.  
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APPENDIX. FIGURES 

A. MERIDIONAL STREAMFUNCTION 

All figures in this section show the streamfunction of volumetric transport.  Each 

plot is a latitude-depth cross-section.  The zero contour is in bold and contour lines are 

spaced at two Sverdrup intervals.  Positive (negative) values indicate counterclockwise 

(clockwise) circulation.  The figure is split at a depth of 360 meters so that detail near the 

surface can be easily viewed. 

1. The Symmetric Case 

Case A was the only model run with both symmetric wind stress and temperature 

forcing. 

 

FIGURE 25. Meridional Volume Transport for the Symmetric Case 
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2. Cases of Wind Stress Asymmetry 

The following figures show cases with asymmetric wind forcing and symmetric 

temperature forcing.  The case designation is given after the wind stress ratio. 

 

FIGURE 26. Meridional Volume Transport for Ratio 3:2 (Case Q) 
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FIGURE 27. Meridional Volume Transport for Ratio 2:1 (Case I) 

 

FIGURE 28. Meridional Volume Transport for Ratio 3:1 (Case J) 
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FIGURE 29. Meridional Volume Transport for Ratio 4:1 (Case B) 

3. Cases of Temperature Forcing Asymmetry 

The next series of figures shows the volume transport for cases of symmetric 

wind stress and asymmetric temperature forcing.  The value of the coefficient B used in 

Equation (5) is given for each figure.  The specific model run follows in parenthesis. 
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FIGURE 30. Meridional Volume Transport for B = -5 (Case C) 

 

FIGURE 31. Meridional Volume Transport for B = -7.5 (Case K) 
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FIGURE 32. Meridional Volume Transport for B = -10 (Case L) 

 

4. Cases of Wind Stress and Temperature Forcing Asymmetry 

Most model runs used asymmetric forcing in both wind stress and sea surface 

temperature.  The following figures are labeled with the wind stress amplitude ratio and 

the value of the coefficient B.  The specific case is also listed.  These figures are grouped 

by wind stress peak amplitude ratio and then in order of lower to higher temperature 

forcing. 
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a. Dual-Asymmetric Cases with Wind Stress Ratio of 3:2 

 

FIGURE 33. Meridional Volume Transport for Ratio 3:2 and B = -5 (Case R) 

 

FIGURE 34. As FIGURE 33 except B = -7.5 (Case S) 
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FIGURE 35. As FIGURE 33 except B = -10 (Case T) 

b. Dual-Asymmetric Cases with Wind Stress Ratio of 2:1 
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FIGURE 36. Meridional Volume Transport for Ratio 2:1 and B = -5 (Case M) 

 

FIGURE 37. As FIGURE 36 except B = -7.5 (Case E) 

 

FIGURE 38. As FIGURE 36 except B = -10 (Case G) 
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c. Dual-Asymmetric Cases with Wind Stress Ratio of 3:1 

 

FIGURE 39. Meridional Volume Transport for Ratio 3:1 and B = -5 (Case N) 
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FIGURE 40. As FIGURE 39 except B = -7.5 (Case F) 

 

FIGURE 41. As FIGURE 39 except B = -10 (Case H) 
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d. Dual-Asymmetric Cases with Wind Stress Ratio of 4:1 

 

FIGURE 42. Meridional Volume Transport for Ratio 4:1 and B = -5 (Case D) 
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FIGURE 43. As FIGURE 42 except B = -7.5 (Case O) 

 

FIGURE 44. As FIGURE 42 except B = -10 (Case P) 
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B. MERIDIONAL HEAT TRANSPORT 

All figures in this section show the streamfunction of heat transport.  Each plot is 

a latitude-depth cross-section.  The zero contour is in bold and contour lines are spaced at 

0.2 PW intervals.  Positive (negative) values indicate counterclockwise (clockwise) 

circulation.  The figure is split at a depth of 360 meters so that detail near the surface can 

be easily viewed. 

1. The Symmetric Case 

 

FIGURE 45. Meridional Heat Transport for the Symmetric Case 
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2. Cases of Wind Stress Asymmetry 

 

FIGURE 46. Meridional Heat Transport for Ratio 3:2 (Case Q) 

 

FIGURE 47. Meridional Heat Transport for Ratio 2:1 (Case I) 
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FIGURE 48. Meridional Heat Transport for Ratio 3:1 (Case J) 

 
FIGURE 49. Meridional Heat Transport for Ratio 4:1 (Case B) 
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3. Cases of Temperature Forcing Asymmetry 

 

FIGURE 50. Meridional Heat Transport for B = -5 (Case C) 

 

FIGURE 51. Meridional Heat Transport for B = -7.5 (Case K) 
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FIGURE 52. Meridional Heat Transport for B = -10 (Case L) 

4. Cases of Wind Stress and Temperature Forcing Asymmetry 

As mentioned before, nine of the 16 model runs used asymmetric forcing in both 

wind stress and sea surface temperature.  The following figures are labeled with the wind 

stress amplitude ratio and the value of the coefficient B.  The specific case is also listed.  

These figures are grouped by wind stress peak amplitude ratio and then in order of lower 

to higher temperature forcing. 



 69

a. Dual-Asymmetric Cases of Wind Stress Ratio of 3:2 

 

FIGURE 53. Meridional Heat Transport for Ratio 3:2 and B = -5 (Case R) 

 

FIGURE 54. As FIGURE 53 except B = -7.5 (Case S) 
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FIGURE 55. As FIGURE 56 except B = -10 (Case S) 
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b. Dual-Asymmetric Cases of Wind Stress Ratio of 2:1 

 

FIGURE 56. Meridional Heat Transport for Ratio 2:1 and B = -5 (Case M) 
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FIGURE 57. As FIGURE 56 except B = -7.5 (Case E) 

 

FIGURE 58. As FIGURE 56 except B = -10 (Case G) 
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c. Dual-Asymmetric Cases for Wind Stress Ratio of 3:1 

 

FIGURE 59. Meridional Heat Transport for Ratio 3:1 and B = -5 (Case N) 
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FIGURE 60. As FIGURE 59 except B = -7.5 (Case F) 

 

FIGURE 61. As FIGURE 59 except B = -10 (Case H) 
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d. Dual-Asymmetric Cases for Wind Stress Ratio of 4:1 

 

FIGURE 62. Meridional Heat Transport for Ratio 4:1 and B = -5 (Case D) 
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FIGURE 63. As FIGURE 62 except B = -7.5 (Case O) 

 

FIGURE 64. As FIGURE 62 except B = -10 (Case P) 
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C. TOTAL MERIDIONAL HEAT TRANSPORT 

1. Differences in Wind Stress Forcing 

In each of the following figures, the sea surface temperature forcing is constant, 

while the curves represent the zonally and vertically integrated heat transport across the 

latitude shown.  Positive (negative) values of heat transport indicate northward 

(southward) transport.  Power is given in terawatts and the wind stress peak amplitude 

ratio (south-to-north) is used to label each curve.  Meridional heat transport for the case 

of both wind stress and temperature forcing symmetry is represented with a dashed line 

and is included in all plots in this section. 

 

FIGURE 65. Total Meridional Heat Transport (Symmetric Temperature Forcing) 

In this figure, the temperature forcing coefficient (B) for each of these four cases 

is zero making the sea surface temperature forcing symmetric about the equator.  The 

following three figures show the meridional heat transport for cases where temperature 

forcing is asymmetric.  The temperature forcing coefficient is annotated. 
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FIGURE 66. As FIGURE 65 except B = -5 
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FIGURE 67. As FIGURE 65 except B = -7.5 

 

FIGURE 68. As FIGURE 65 except B = -10 
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2. Differences in Sea Surface Temperature Forcing 

In each of the following figures, the wind stress forcing is constant.  The curves 

represent the zonally and vertically integrated heat transport across the latitude shown.  

Positive (negative) values of heat transport indicate northward (southward) transport.  

Power is given in terawatts and the temperature forcing coefficient used in Equation (5) is 

used to label each curve.  As mentioned before, the dashed line shows the meridional heat 

transport in the dual-symmetric case. 

 

FIGURE 69. Total Meridional Heat Transport (Symmetric Wind Stress Forcing) 

In this figure, the wind stress forcing coefficient (A) for each of these four cases is 

zero making the sea surface temperature forcing symmetric about the equator.  The 

following three figures show the meridional heat transport for cases where wind stress 

forcing is asymmetric.  The wind stress peak amplitude ratio is given with each figure. 



 81

 

FIGURE 70. As FIGURE 69 except A = 3:2 

 

FIGURE 71. As FIGURE 69 except A = 2:1 
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FIGURE 72. As FIGURE 69 except A = 3:1 

 

FIGURE 73. As FIGURE 69 except A = 4:1 
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D. NET SURFACE HEAT FLUX 

All figures in this section show net heat flux at the surface.  The zero contour is in 

bold and contour lines are spaced at 25 Wm-2 intervals.  Positive (negative) values 

indicate flux into (out of) the ocean. 

1. The Symmetric Case 

 

FIGURE 74. Net Surface Heat Flux for the Symmetric Case 
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2. Cases of Wind Stress Asymmetry 

 

FIGURE 75. Net Surface Heat Flux for Ratio 3:2 (Case Q) 

 

FIGURE 76. Net Surface Heat Flux for Ratio 2:1 (Case I) 
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FIGURE 77. Net Surface Heat Flux for Ratio 3:1 (Case J) 

 

FIGURE 78. Net Surface Heat Flux for Ratio 4:1 (Case B) 
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3. Cases of Temperature Forcing Asymmetry 

 

FIGURE 79. Net Surface Heat Flux for B = -5 (Case C) 

 

FIGURE 80. Net Surface Heat Flux for B = -7.5 (Case K) 
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FIGURE 81. Net Surface Heat Flux for B = -10 (Case L) 

4. Cases of Wind Stress and Temperature Forcing Asymmetry 

The following figures are labeled with the wind stress amplitude ratio and the 

value of the coefficient B.  The specific case is also listed.  These figures are grouped by 

wind stress peak amplitude ratio and then in order of lower to higher temperature forcing. 
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a. Dual-Asymmetric Cases for Wind Stress Ratio 3:2 

 

FIGURE 82. Net Surface Heat Flux for Ratio 3:2 and B = -5 (Case R) 

 

FIGURE 83. As FIGURE 85 except B = -7.5 (Case S) 
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FIGURE 84. As FIGURE 85 except B = -10 (Case T) 

b. Dual-Asymmetric Cases for Wind Stress Ratio 2:1 

 

FIGURE 85. Net Surface Heat Flux for Ratio 2:1 and B = -5 (Case M) 
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FIGURE 86. As FIGURE 85 except B = -7.5 (Case E) 

 

FIGURE 87. As FIGURE 85 except B = -10 (Case G) 



 91

c. Dual-Asymmetric Cases for Wind Stress Ratio of 3:1 

 

FIGURE 88. Net Surface Heat Flux for Ratio 3:1 and B = -5 (Case N) 

 

FIGURE 89. As FIGURE 88 except B = -7.5 (Case F) 
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FIGURE 90. As FIGURE 88 except B = -10 (Case H) 

d. Dual-Asymmetric Cases for Wind Stress Ratio of 4:1 

 

FIGURE 91. Net Surface Heat Flux for Ratio 4:1 and B = -5 (Case D) 
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FIGURE 92. As FIGURE 91 except B = -7.5 (Case O) 

 

FIGURE 93. As FIGURE 91 except B = -10 (Case P) 
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E. INTERHEMISPHERIC MERIDIONAL OVERTURNING CIRCULATION 
AND HEAT TRANSPORT 

1. Interhemispheric Volumetric Transport Solutions 

 

FIGURE 94. Volumetric Transport Solutions for Constant Temperature Forcing 

 

FIGURE 95. Volumetric Transport Solutions for Constant Wind Stress Forcing 
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2. Interhemispheric Heat Transport Solutions 

 

FIGURE 96. Heat Transport Solutions for Constant Temperature Forcing 

 

FIGURE 97. Heat Transport Solutions for Constant Wind Stress Forcing 
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3. Interhemispheric Total Transports 

 

FIGURE 98. Volumetric Transport Solution for Dual Forcing 

 

FIGURE 99. Heat Transport Solution for Dual Forcing 
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FIGURE 100. Volumetric Transport Solutions 

 

FIGURE 101. Heat Transport Solutions 
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